

LA-UR-21-21086

Approved for public release; distribution is unlimited.

Title: Design of the Coherent CAPTAIN Mills (CCM) Roof Shielding Package

Author(s): Renner, Eric Logan

Intended for: Report

Issued: 2021-02-05

Design of the Coherent CAPTAIN Mills (CCM) Roof Shielding Package

Eric Renner (P-3, Nuclear and Particle Physics and Applications)

1/28/2021

Contents of Talk

What is the CCM experiment?	Why is Shielding Important?	Design Constraints	Design of Assemblies	Structural Analysis	Conclusion
LANSCE Beam PathER-2 Lujan FacilityCEvNS	Decrease Background Events	General size and shape requirements	 Design of vertical columns Design of Horizontal "flexure" members 	 ASCE design loads Sizing of welded and bolted connections 	 Anticipated cost of structure Anticipated Timeline for instillation

What is the Coherent CAPTAIN Mills Experiment?

CAPTAIN = "Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos"

COLUMBIA UNIVERSITY

The University of Manchester

τ≈ 26 nsec

Lujan Facility at LANSCE

Intense source muon neutrinos: target MCNP simulation flux 4.74x10⁵ ν /cm²/s at 20 m

Fragments

Fragments

Lujan Experimental Area

- Space for large 10-ton liquid Argon ν detector.
- Run detector in multiple locations.
- Room to deploy shielding, large overhead crane, power, etc

τ ≈ 2200 nsec

CCM120 Detector

- 120 PMT's to detect scattering events
- Number of PMT's are doubled in CCM200 detector

The inside of the CCM120 detector

Why is Shielding important?

 During the 2019 beam cycle we methodically added shielding and measured the activity in detector

Shielding delays beam related activity in detector

Steel shielding: decreases beam-related rate and increases delay

Front concrete: decreases bream-related energy deposition in CCM

Side shielding: decreases beam-related rate

Current Shielding Configuration

52" Thick Steel Block

 Allows fast neutrons to interact with the detector from above

 Gamma rays produced in the concrete interact with the detector.

> 3' Thick Concrete Blocks

2" Thick Poly Sheets

Proposed Shielding Configuration

50" Steel above detector

 Shields from fast neutrons that could interact with the detector from above

 Shields from gamma ray production inside the concrete

2" Steel walls

Additional Concrete

Size and Shape Design Constraints

- Detector shape and size
 - Require space directly above the detector for operations
 - Shielding should be installed as close to the detector as possible
 - Shielding should enclose the detector
 - As much steel should be added vertically without interfering with the 172" crane hook in the area

Shape of the detector

 Is shielded well on three sides with concrete and steel blocks in the area

 Need to add shielding above the detector

Standard Design

- Steel clears everything installed over the detector. Does not interfere with equipment on the top hat
- Not ideal given the height of the detector and maximum height of shielding we can install.
 - Maximum steel shielding is 24"
- Lots of exposed area around the detector

180"

180"

Steel is Transparent

Standard Design. Revision 1

 There is interference with the equipment over the top hat

- Requires a cavity in the shielding

 Less exposed area around the detector

Can we optimize this design?

- Decrease the 180"x180" footprint
- Increase the amount of shielding over the detector (>39")

123"

Final Design

- Steel does not interfere with equipment on the top hat
- Diagonal members used to support steel not directly over the detector
- 44" of steel can be installed above the roof

24" installed above the cavity

Cavity Design

 Approximately 70"x70" space to work on top of the detector

Beam Size in Final Design

- Can calculate the maximum bending stress on the beams to the right using textbook equations.
- The density of the steel x height of steel is the pressure over the area supported by the 5 beams. (Force/Area)
- This pressure can be broken down into 5 line pressures. (Force/Length)
- Assume the 5 parallel beams are fixed at the ends
- Calculate the bending stress on the member with the largest line pressure.

Beam Size in Final Design

- The results give an estimate on the required beam size and elastic modulus
 - W40x167 beam
 - 5ksi bending stress
 - 600in^3 Elastic modulus
 - W18x86 beam
 - 20ksi bending stress
 - 166in^3 Elastic modulus

 Could quickly iterate and optimize the beam size comparing these results to FEA analysis.

Design considerations of vertical members

- Resist bending in two independent directions
 - One beam angled at 45degrees or two beams per leg
- The pressure applied to the floor could not be too high ~3ksi
 - Cross section must have large enough area
- Must stand erect and remain stable during construction
 - Requires foot plate
- Square in shape to allow walls to enclose detector

Resist bending in two directions

Consider two designs to accomplish this

Pressure transmitted to the floor

- Approximately 150 tons to support
- Cross section required = 100in² = 300,000lbs/3000ksi
- Required Area for 4 legs = 25 in^2/leg
- Required Area for 8 legs = 12.5in²/leg

Leg must stand erect with stability during construction

 Guiding principle is that rigid objects "fall over" when their center of mass crosses a perpendicular line from the floor.

Critical Angle and Tipping Force

Tipping Force

- Critical Angle for single beam design = 17°
 - Tipping Force = 586lbs
- Critical angle for dual beam design = 16°
 - Tipping Force = 406lbs

Must be square to fully enclose detector

• Edge of leg should be square to allow for walls to fully enclose detector.

Final Design of Structure

Structural Analysis

 Followed the ASCE design loads handbook

ASCE/SEI
7-16

Minimum Design Loads and Associated Criteria for Buildings and Other Structures

ASCE Design load 5 D + 0.7(Eh+Ev)

- Point mass and distributed mass were used to model the steel installed on the structure.
- Acceleration in the vertical direction was used to model the dead load and vertical seismic force
 - Ev = 43kip
- A horizontal seismic force was applied to the face of the two weldments
 - Eh = 102kip
- Factor of Safety of 1.5

Sizing of 22 unique welded and bolted connections

 Force and moment at each contact can be retrieved using ANSYS

- There are 300 total connections in the model. They can be grouped into 22 unique connections
- Welds and bolts can be sized using textbook formulae and appropriate safety factors (2).

What is next?

- The structure is at the shops being quoted
 - An early budgetary estimate puts the full structure at over \$500K
- Assemble the structure this summer

 This shielding package should reduce background and improve our sensitivity leading to a better measurement.

